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FORCED N O N L I N E A R  OSC IL L AT IONS OF A 

GAS B U B B L E  IN A L A R G E  S P H E R I C A L  FLASK 

(RESONATOR)  F I L L E D  W I T H  A F L U I D  

It. I. N igmatu l in ,  V.  Sh. Shagapov,  and G. Ya. Galeeva UDC 533.2 

Radial oscillation.~ of a 9as bubble in a larye spherical flask filled with a fluid are considered. 
We derive an equation of the change of the bubble radius by the known law of pressure variation 
at the boundary of the liquid volume (the law of motion of the piston) for a period of time 
durin9 which, repeatedly reflected from the piston, the leadin 9 front of the reflected-from-the 
bubble perturbations reaches the bubble. For further calculations of the change of the bubble 
radius, recurrent relations which include the wave reflected from the bubble in the previous cycle 
and its subsequent reflection from the piston are obtained. Under harmonic action of the piston 
on the fluid-bubble system, a certain periodic regime with a package of bubble oscillations is 
established. 

In t roduc t ion .  Short pulses of high temperature and pressure in the gas phase can be reached by 
vibrational or acoustic action on the fluid-bubble system in a certain vessel. In the resonance, almost adiabatic 
supercompression of the bubble, leading to periodic supershort (~10 -11 sac) and superhigh temperatures 
of the gas (~10 6 K) in its center, even bubble luminescence can be observed. This phenomenon is called 
sonoluminescence [1-3]. The possibility of attaining the higher maximum temperatures was considered in 
[4, 5]. Here the basic physical mechanism is the radially convergent, inertial motion of the fluid, permitting a 
significant fraction of the mechanical energy supplied to be concentrated in the bubble in the form of gas-phase 
internal energy. The Rayleigh-Lamb equation, obtained within the framework of the incompressible fluid, or 
its modified forms making allowance for, e.g., acoustic radiation, is usually used to describe the dynamics of 
symmetrical oscillations of the bubbles [6]: 

3 ;22 ui;2 Pg - Ptoo a f i + ~  + 4  = 
a pt 

Here a is the bubble radius, pg and Ploo is the pressure in the bubble and in the fluid far from the bubble, p is 
the density of the fluid, and Ul is the kinematic viscosity of the fluid. This usage assumes that the characteristic 
time of propagation of a sound wave through the liquid volume is tc = R/CI (R is the characteristic linear 
dimension of the volume and C! is the velocity of sound in the fluid) is much less than the period tM of 
eigenoscillations of the bubbles (to << tM), determined by the Minaert formula. However, when the radial 
motion of the bubble is considered in a "large" volume (to i> tM), the description of the bubble dynamics by 
means of the Rayleigh-Lamb equations with the adopted value pt~ of the pressure at the boundary of the 
liquid volume is not justified. The greatest effect in the attainment of superhigh temperatures in gas bubbles 
can be obtained precisely in "large" volumes. This is primarily connected with the fact that if in the case 
of action of the pressure on a "small" volume, energy accumulation mainly occurs in the form of the kinetic 
energy of the radial fluid motion, then in the case of a "large" volume, first, energy accumulation is basically 
connected with fluid compressibility and, second, the wave-assisted transfer of this energy to the volume's 
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center and its concentration (cumulation) occur. Here the most energetically favorable regime is realized at 
frequencies equal to those of free eigenoscillations of the spherical liquid volume. 

We note that the Herring-Flynn equation and the refinement proposed in [7] are not suitable for 
calculations of forced gas-bubble oscillations in a "large" but finite volume. The Herring-Flynn equation 
describes only the initial stage of dynamics, when the perturbations reflected from the external boundary of 
the liquid volume did not yet return to the bubble. Moreover, the procedure of deriving an improved equation 
was not correct, because in fact the equal-to-infinity term was ignored. We note that the physical interpretation 
of the presence of this term is very simple and is connected with the fact that any convergent-from-infinity 
spherically symmetrical pressure perturbation has an infinite amplitude at a finite distance. 

1. Basic E q u a t i o n s .  We shall consider radial oscillations of a gas bubble in a compressible fluid. The 
equations of fluid motion about the bubble are taken in the form 

Ow 0 w 2 I Opt Opt 1 0 
Og -k 0--~ ~ "  = p~ Or'  Og + -~ ~r (PlWr2) = O, Pl = PO "1- CY(pI -- PlO), (1.1) 

where w is the fluid velocity. Here and below, the subscript l corresponds to the fluid parameters, and the 
subscript 0 refers to the undisturbed state of the system. The fluid compressibility is adopted in a linear 
approximation. We assume that  the pressure and the temperature in the gas phase are uniform. We also 
assume that the gas behavior is polytropic and, in particular, adiabatic. Then its pressure pg is uniquely 
determined via the current value of the bubble radius: 

37 pg = po(ao/a) , (1.2) 

where "t is the polytropic exponent of the gas. 
For weak perturbations in the fluid (w << C)), from Eq. (1.1) it follows the wave equation for pressure 

perturbations far from the bubble (r >> a) 

02Ap! I 0 OApI~- 
0t 2 = C~ ~ ~r  ( r2 "- '~r ) (APt = Pl -- Po). (1.3) 

For the velocity distribution, we have 

I / OApt 
w = - - - -  at. (1.4) 

mo 

In the general case, the solution of Eq. (1.3) is of the form Apt = Apdiv+Apcoa, where Apcon = fcon(t+r/Cl)/r,  
Apdiv -- fd iv( t -  r /Cl ) / r  and Apcon and Apdiv correspond to the convergent and divergent waves, respectively. 
Based on (1.4), for the velocity we can write 

W -- Wcon "{- Wdiv, 

t 
Apdiv 1 / 

Wdiv PICI "k PlOr Apdivdt, Wcou = 
- - O O  

t 
Apcon 1 / 
Pi---~I + Plor Apcondt. 

- - 0 0  

(1.5) 

2. In i t ia l  S t age  of  Osci l la t ions .  Let a piston in equilibrium (to = 0 and pl = Pg = p0) begin to act 
at t = 0 on the fluid-gas bubble system through the boundary of a spherical liquid volume of radius R. We 
present the law of pressure variation behind the piston as follows: 

p(R)(t) = PO -}- Ap(R)(t) �9 (2.1) 

The velocity of the piston and the pressure perturbation behind it are related by the relation w(R)(Q = 
--Ap(R)(Q/PlOC I. Then a pressure .wave is expected to propagate over the initially quiescent fluid: 

Apcon R Ap(R ) t + (2.2) =7 - 0 7 "  
Having reached the leading wavefront moving by the law r~ = R - Ult, this wave reflects from the bubble 
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surface (rw = a0). We search for pressure perturbations that  correspond to the reflected wave in the form 

Apdiv r /'xPdiv t -  . (2.3) 

For t >. tc [to = (R  - ao) /Ct  ~ R/CI] ,  from the pressure-continuiW condition on the bubble surface (r = a) 
we write 

(Apcon + Apdiv)[r= a = pg(t) -- PO. (2.4) 

Substituting expressions (2.2) and (2.3) into (2.4), we obtain 

For the wave reflected from the gas cavity, we have 

o( ) 
r Ot +-r pg t +  - P o  �9 (2.5) 

In addition, for t >>, tc the sum of the velocity perturbations which correspond to the incident and reflected 
waves should satisfy the condition 

(Wcoa + Wdiv)lr=a da = ~- .  (2.6) 

Based on expressions (1.5), with allowance for (2.2) and (2.5), for the velocity field we obtain 

t ,,.,(,+.-,) / ( to = tocon + todiv, tocon = --PloClr ~ + ~ A p  (R) t + dr, 
PlO r2 

o 

o (,(o-.) ) 
wai, = ploCtr Ct § proof-------- ~ a t + ~ - Po (2.7) 

t t 

Pt~ 0 Ct p/0r2 0 

We note that  the solution (2.7) describes the velocity distribution in the liquid volume a(t) <~ r <~ R for the 
period of t ime te ~< t ~< 2re. Subst i tut ing (2.7) into (2.6), we obtain the integrodifferential equation 

a ( t ) ( p g ( t )  - vo )  a t  = a a  - 2  ptoOta(t) AP(R) t + -G-I + P~oGt (pg(t) -- Po) + ptoa2(t) o d--i" 

Ignoring a(t)  compared with R, after some transformations we obtain 

d (c~2a) : a ( p g ( t ) _ p o ) _  d (12 

According to the known law of pressure variation Ap(R)(t)  at the boundary of a liquid volume [or the law of 
piston motion to(R)(t)], Eq. (2.8) allows one to determine the change in the gas-bubble radius for a period 
of t ime during which, repeatedly reflected from the piston (r = R), the leading front of the perturbations, 
reflected from it, reaches the  bubble (re ~< t ~< 3to). 

In the case of constant  pressure in the bubble (P9 = p0, which can occur for vapor bubbles), from Eq. 
(2.8) we obtain 

a(i = 2R 
- -  PlOC-'-'~l A P ( R ) ( t  - -  t c ) .  (2.9) 

Here the equilibrium position of the bubble (~ = 0) for t = tc is taken into account. Bazed on (2.9), we obtain 
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the solution 
t 

_ a~ 2 = 4R / a 2 -PtoC"-~t -- Ap( n)( t - re) dr. (2.10) 
tc 

For the harmonic law of pressure variation on the piston, we have 

Ap (R} = Ap (R} sin (wt). (2.11) 

It follows from (2.10) that 

2 8 R  A . ( m  �9 2 ,o,oC,,, ,,A sm C"(' to) ) (t > to). (2.12) a 

Using solutions (2.7) for the velocity distribution or (2.2) and (2.3) for the pressure distribution (based 
on the impulse-momentum equations), we obtain the acceleration field. Assuming that on the bubble surface, 
the condition 

Ot + Ot ] ~ : , =  dt 2 

is satisfied, we have 

d2a d ~ .  a 
Ploa d-~  = P.q(t) - Po - ~" { ,- ' ,  AP(R)( t - -  to) -- ~/'/(p,(~) -- p0)} .  (2.13) 

Equation (2.13) differs from (2.8). It is associated with the fact that the derivation of these nonlinear equations 
with the use of the solution of the linear problem was not, generally speaking, correct. In the first case, the 
velocities were obtained with a variable value of the bubble radius [condition (2.6)] and, in the second case, 
the common point is acceleration. In linearized form, the two equations coincide. 

It is noteworthy that Eqs. (2.8) or (2.13), obtained from the linear wave equations, can be used for fairly 
weak actions on the fluid-bubble system under which the rate of change of the bubble radius is significantly 
less compared to the velocity of sound in the fluid (h << CI) and the displacements of the fluid 6r are small 
(6r << r and, in particular, 6a << a). A comparison of Eq. (2.13) with the Rayleigh-Lamb equation shows 
that the term (3/2)Plo 52 "is lost" on the right-hand side. Supplementing the equation by this term and the 
viscosity-induced term, we obtain 

3-2 " d ,~ a [2R -Po) ]  14) 

Apparently, the range of applicability of Eq. (2.14) is much wider than that of Eq. (2.13). It is supported 
by comparison of the solution of Eq. (2.14) (the solid curve in Fig. 1) with the numerical solution [5] (the 
dotted curve), obtained after integration of the complete system (1.1) for the following parameters of the 
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water-air bubble system: a0 = 10 -s  m, R = 5 .10  -2 m, Ct = 1500 m/sec, 7 = 1.4, and ut = 0. The law of 
pressure variation at the boundary of the liquid volume (r = R) for t > 0 is taken in the form (2.11). The 

following values for the ampli tude of pressure and circular frequency are used: Ap(a R) = 0.25 �9 10 s Pa and 
= 27r �9 45 kHz. The dashed curve was calculated by the Rayleigh-Lamb equation for the same parameters. 

We note that Moss et al. [5] solved the complete gas-dynamic problem with allowance for dissociation and 
ionization in the gas phase. The surprising proximity of the solid and dotted curves, particularly at the stage 
of the first slow expansion and compression of the bubble in an "extreme" regime, shows the advantage of 
Eq. (2.14), because its use instead of the complete system of hydrodynamic equations in a fluid (1.1) basically 
facilitates the procedure of numerical analysis of the dynamics of the fluid-bubble system. This circumstance is 
particularly important for calculations in a cyclical regime of action. The process of taking into account should 
include two stages. In the first stage, based on Eq. (2.14) (or its modifications with allowance for repeated 
reflections of the waves from the liquid boundary) the motion in the slow stage, in which energy accumulation 
occurs in the system, is determined. The gas behavior in the bubble at this stage can be described by the 
idealized pattern (1.2). Therefore, one needs to calculate the processes occurring in the fluid and in the gas 
in a lengthy formulation only for the fast stage of compression and expansion of the gas cavity, using the 
results of the first stage of calculation as the initial data. It is necessary to note that studying the processes 
near the moment of maximum compression of the bubble with allowance for the waves converging to the 
center and reflected from the center and the bubble walls is decisive for analysis of superhigh temperatures 
and pressures in the gas phase. If one considers the behavior of a gas bubble from a macroscopic point of 
view, when the variation of the radius, pressure, and temperature of the bubble as functions of time is of 
interest, it is possible to confine oneself to an approximate description of the gas behavior in the bubble. This 
is confirmed by Fig. 1, where the solid and dotted curves are in good agreement with each other after the 
first and subsequent "jumps off." Consequently, the use of the Rayleigh-Lamb equation for calculation of the 
bubble-radius oscillations is not justified. 

The validity of Eq. (2.14) can be justified in another way. Under the wave action on the fluid- 
bubble system in the neighborhood of the gas bubble at a distance I, which is significantly smaller than 
the wavelength )~ (l << A), the compressibility effects are insignificant. We separate a certain effective volume 
of an incompressible fluid with the external radius aetr (A >> aejr >> a) near the bubble. We assume that  the 
fluid motion occurs according to the equation of a viscous incompressible fluid in this volume (aefr/> r />  a) 
and the linear equations (1.3) and (1.4) outside this volume (ae~ ~< r <~ R). After transformations similar to 
those used in deriving (2.8) and assuming the satisfaction of the conditions a0 << ar << R, we obtain Eq. 
(2.14). In other words, this equation follows from combining the solution of the wave equation with that of 
the equation of an viscous incompressible fluid. These aspects of the description of the bubble dynamics were 
analyzed in [4]. 

Since Eq. (2.13) describes the bubble dynamics prior to the moment t = 3to, it is necessary to refine 
this moment for further calculations (t > 3to) with allowance for the wave reflected from the gas bubble in 
the previous cycle and its subsequent reflection from the piston. One can adopt two patterns to describe the 
reflection of waves from the piston. In the first pattern, the pressure perturbation on the piston Ap(R)(t) is 
always a known specified function, and, in the second pattern, the law of piston motion AFt(t) is specified 
relative to the initial position. In accordance with these patterns, the boundary conditions on the piston can 
be written as follows: 

(Peon + Pdiv)lr=R = Ap(R)(t) (2.15) 

or 

dR(t) (t >1 2to). (2.16) (Wcon + Wdiv)jv=R = w(R)(t), w(R)(t) = dt 

With allowance for the relations on the piston surface Wcon = --Apco,/(ploCt) and Wdiv = Apdiv/(PtOCl) for 
r = R, the boundary condition (2.16) can be reduced to the form (-Apcon +ZXpaiv)lr_ R = ptoCtw(R)(t). Using 
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expression (2.5) and the boundary conditions (2.15) and (2.16), we obtain 

a t 2 - - R  2 ( a - - R )  (pg( t  + " - ~ l  ) PO) 

or 

a a - - R  

Ignoring the term a compared with R and using (2.1), we obtain 

Apl~)( t )  = Ap(R)(t) + A p ( R ) ( t -  2to) a(t -- t~) 
R 

or  

obtain 

or 

- - ( p ~ ( t -  t~) -po)  

Apl~)(t) = - p zoCt (w(R) ( t ) -  w ( R ) ( t -  2t~)) + a ( t -  t~) R (pAt - t,) - po). 
Continuing this consideration, for the nth cycle, where (2n + 1)to <~ t ~< (2n + 3)t~ with n > 

A"tR)ct~-(,) t J = AP(R)(t) + AP(R)( t -- 2to) + . . .  + Ap(R)(t -- 2ntc) a(t R- tc) (pg(t - re) - p0) 

a(t - 3to) a(t - (2n - 1)t,) 
R (p~(t - 3tr - po) - . . .  - R (pg(t - (2n - 1)tr - p0) 

1~ we  

(2.17) 

OR) act to) Ap(,) (t) = --ptoCt(w(R)(t) -- w(R)(t -- 2to) + . . .  + (--1)"wCR)(t -- 2ntc)) + R (pg(t - t~) - po) 

a(t - 3to) R (pg(t - 3to) - p0) + . . .  + ( -1 )  "a ( t  - (2n - 1)t,) R (p~(t - (2n - 1)re) - p0)- (2.18) 

It is easy to see tha t  relations (2.17) and (2.18) can be written as the  following recurrent relations: 

a( t  
R- (pg(~ - t , )  - p0 ) ) ,  A"(R)q ~ ( o )  ~ J = AP(R}(t) 

to) 

or 

/ I m  a ( t  to) 
R (p~Ct - to) - p0)), 

~,,(R)t,(O) __ _PlOiw(R)(t) (rt >t 1). 

Here the coefficient X was introduced to include the incomplete reflection on the piston. 
If the pressure on the  piston is given, its velocity is found from the expression 

A p ( R ) ( t ) -  (1 + x ) A p I ~ ( t ) .  
w ( R ) ( t )  = x p t o O t  

When the velocity of the piston is known, for the pressure on the piston we have 

(1 + X)/kpl~(t ) + PloClw( R) ( t ) 
ApgR)(t) = 

X 
The law of radius variation from the moment  (2n + 1)re to (2n + 3)re is determined by Eqs. (2.12) with a 

replacement of Ap(R)(t)  by Apl~](t  ) from (2.17) or (2.18). 

Figure 2 shows calculation results obtained by means of Eq. (2.14). The law of pressure variation on the 
piston is adopted in the form (2.11); here Ap(AR) = 0.075.10 s Pa, w (R) = 2~r. 15 kHz, and vt = 10 -s  m2/sec. It 
is noteworthy tha t  the adopted value of the frequency of forced oscillations corresponds to the first resonance 
frequency of the spherical water volume of radius R = 5 �9 10 -2 m. The gradual "swinging" of the bubble 
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radius (the solid curve) is traced on the diagram. If oscillations occur in a smoother regime in the initial 
stage, this regime gradually (beginning with the second cycle for our example) enters into a stage with a 
packet of oscillations, which consists of one leading oscillation with the more distinct compression and high- 
frequency "rattling." In this regime, for a prescribed pressure variation on the piston, the increase in the 
oscillation frequency of the bubble radius occurs until the leading-osciUation period t (m) reaches the phase 
of forced oscillations [t('~) < tU')]. At this moment, the oscillations of bubbles "detune." The subsequent 
oscillations become irregular, and the oscillation frequency of the bubble radius stops to increase. As the 
effective parameter, which determines the gas state at the moment of maximum compression of the bubble, 
one can use the radial velocity of the bubble wi in the compression stage, when the bubble radius is equal to 
the initial radius [a(ti) = a0]. Equating the kinetic energy of the radial motion at this velocity, calculated as 
for the incompressible fluid, to the increment of the bubble's internal energy as the radius changes from a0 to 
the value at the moment of maximum compression a,n [4], we obtain an expression for the maximum possible 
variation in the temperature of a perfect gas: 

AT(m) 3 1 Pzo w~i) (AT(,,,) = T(m) - To). 
A0(m)= To = 2 ( 7 -  )p0 

The dependence of A0(m) on t ime is shown in Fig. 2 (the dot-and-dashed curve). For the stage with a packet of 
oscillations, the value of the parameter A0(m ) was obtained for the leading oscillation. The parameter A0(m) 
determines the energy "pumped" into the bubble. This parameter is directly related to the maximum possible 
temperature of a dense nonpeffect gas in the strong compression of the bubble, but, generally speaking, it 
is not equal to this temperature. The dashed curve corresponds to the dimensionless velocity of the piston 
W (R) = -p loClw(R) /po  (this form of the dimensionless velocity is convenient for comparison with the value of 
the pressure behind the piston, which is induced by the piston motion according to the known law). This curve 
was drawn, ignoring the anomalously large peaks connected with high-frequency "rattling" of the bubbles. 
As some estimates show, in real systems these peaks of pressure because of the fluid viscosity and nonlinear 
effects indeed clamp as the waves propagate from the bubble to the piston. The diagram shows that the 
gradual "swinging" of the velocity, and hence of the oscillation amplitude, of the piston occurs. 

Figure 3 illustrates the dynamics of bubble oscillation with variation of the piston velocity according 
to the law 

w (R) = w (R) sin(w(R)t). (2.19) 

The following values of the amplitude of the velocity oscillation and of the reflection coefficient on the piston 
were used: w (R) = 0.017 m/see, Ap (R) = 0.25 Pa [Ap (R) = ptoCiw(R)], and X = 0.5; the other parameters 
are the same as in the previous examples. It follows from the curves that in the case where the velocity of 
the piston is given in the form (2.19), the bubble oscillations reach a certain periodic regime. An analysis 
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of the calculation results as applied to experimental data [2] allows one to conclude that the oscillations 
in the initial stage correspond, to a large extent, to the oscillations in the regime of a piston at a specified 
pressure. In the initial stage, the "strength" of the experimental setup is determined by its possibility to excite 
pressure oscillations of maximum amplitude. As the amplitude of forced oscillations of the bubble increases, 
the system gradually reaches a steady-state periodic regime, in which the oscillation parameters are limited 
by the amplitude of displacements of the piston (the flask walls) ARA = w(R)/to (R). The dashed curve in 
Fig. 3 corresponds to the dimensionless pressure perturbation on the piston Ap(X)/po without allowance for 
high-frequency peaks in the pressure. It is seen that, as the regime of steady-state oscillations is reached, 
the pressure amplitude on the piston, which corresponds to the oscillation of the piston by the law (3.1), 
damps and only the pressure peaks associated with bubble oscillations remain. We note that in the case of 
the absence of a bubble, in a steady-state regime the pressure at the piston in the center of the liquid volume 
should be equal to zero, because the frequency of oscillations to(R) is one of the eigenfrequencies of oscillations 
of the liquid volume of radius R. 

3. S te a dy -S t a t e  Forced  Oscillations. We shall consider the motion of the fluid-bubble system 
under the harmonic action of the piston on this system. For definiteness, we assume that the piston executes 
simple harmonic motions with the circular frequency 

to(R)(t(R) = 2~r/to(R)), A R  = ARA sin(to(R)t). (3.1) 

It follows from the previous analysis that precisely this formulation for the piston is most adequate as applied 
to the experimental data of [1], when a certain periodic regime is established. In addition, we assume that 
the frequency of oscillations of the piston coincides with one of the eigenfrequencies of the liquid volume of 
radius R for free oscillations [to(R) = took, toc = ~rCI/R (R), and k is an integer]. 

As has already been mentioned, under these conditions of the action on the fluid-gas bubble system a 
certain periodic regime with a packet of bubble oscillations is established: 

a(t + t (R)) = a(t), pg(t + t (R)) = p~(t), pr -I- t (R) )  = Pcon(t), 

Pdiv(t + t (R)) = Pdiv(Q, Ap(R) = P(c~ + P(R)v (Ap(R) = ~P]r=R)" 

Here .(R) and p(ff) are the components of the pressure perturbations on the piston surface, which correspond Fdiv 
to the divergent (from the center) and convergent (to the center) waves. 

As the boundary condition on the piston (r = R), we use a condition similar to (2.15): 

( --Ap~Ro ) + XP(diR)v = PlOClw(R)(t) w(R)( t )_  "-~ ) 

Here X is the reflection coefficient on the piston (X = 1 and X = 0 correspond to the total reflection and the 
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absence of reflection on the piston). 
From the pressure-continuity condition, at the boundary of the gas bubble, with allowance for a << R 

we write 
a(t) 

Ap~v)(t- to) + Ap(Ro)(t + to) = --if-(pg(t)- Po). (3.2) 

A~(/Z)/t ~ and Ap(~)v(t), from Taking into account that  the quantity 2to is the period of the functions peon k ] 
(3.2) we obtain A p ( R ) ( t -  re) = (a(t)/R)(pg(t)- Po). After appropriate transformations and the arguments 
as in deriving (2.14), from condition (2.6) we have 

( 3. 2 vt__~) 2ptO_.____R_Rd2AR(t--te) X - x d ( a  ) 
PlO aaq-~a q-4 =Pg--Poq" lq-x dr2 Jr~l dt ~ (pg-pO) �9 (3.3) 

For X = 0, when the piston is as if "transparent" for waves diverging from the gas bubble, from (3.3) we 
obtain an equation which coincides in form with Eq. (2.13) for the initial stage of oscillations. 

Figure 4 shows the effect of the oscillation frequency ARA of the piston on the bubble dynamics 
during one period (re <~ t ~< t ,  + t (g)) [0 <~ t' ~< t(g) and t ~ = t - re]. The open points correspond to the 
maximum values of the effective parameter AO(m) during one period. The calculations were carried out for 
the above-indicated values of the parameters of the fluid-gas bubble system. The frequency of oscillations 
of the piston was taken to be equal to off R) = 2~r �9 15 kHz [t (R) = 67 �9 10 -6 sec], which corresponds to the 
first resonance frequency for this liquid volume (R = 5 �9 10 -2 m). In the numerical solution (3.3), it was 
assumed that X = 0.5 and a = a0 and d = 0 (t = re). For the solution to be periodic (to correspond to 
a steady-state regime) under the  given initial conditions, the condition a = a0 and h = 0 for t = te + t (R) 
should be satisfied. To do this, the sum of the period of the first leading oscillation of the bubble and the 
extension of the oscillating "tail" should decrease in one period of oscillations of the piston. It is noteworthy 
that by choosing the initial conditions in this way, in the general case we restrict the range of possible periodic 
solutions. In the absence of acoustic losses outside the fluid-bubble system (X = 1), damping of the oscillating 
"tail" requires a dissipative mechanism which is ensured in this case by introducing the effective viscosity; the 
value of this viscosity can exceed considerably the magnitude of the actual viscosity (in particular, owing to 
the interphase heat transfer). It is seen from Fig. 4 that an increase in the oscillation frequency of the piston 
causes an increase in the amplitude and period of the first leading oscillation of the bubble. 

Figure 5 shows the bubble radius versus the t ime for various values of the coefficient X, which takes 
into account the acoustic radiation' to the ambient medium for ARA = 0.24 �9 10 -6 m. 

The authors thank N. K. Vakhitova for assistance in computations. 
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